SporeWeb

Bacillus Subtilis

References

 

 

 

 

 

1. Hoch, J. A. & Varughese, K. I. Keeping signals straight in phosphorelay signal transduction. J. Bacteriol. 183, 4941-4949 (2001)   pubmed.

 

2. Perego, M. et al. Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis. Cell 79, 1047-1055 (1994)   pubmed.

 

3. Ratnayake-Lecamwasam, M., Serror, P., Wong, K. W. & Sonenshein, A. L. Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev. 15, 1093-1103 (2001)   pubmed.

 

4. Dworkin, J. & Losick, R. Linking nutritional status to gene activation and development. Genes Dev. 15, 1051-1054 (2001)   pubmed.

 

5. Mirouze, N., Prepiak, P. & Dubnau, D. Fluctuations in spo0A transcription control rare developmental transitions in Bacillus subtilis. PLoS Genet. 7, e1002048 (2011)   pubmed.

 

6. Oppenheimer-Shaanan, Y., Wexselblatt, E., Katzhendler, J., Yavin, E. & Ben-Yehuda, S. c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis. EMBO Rep. 12, 594-601 (2011)   pubmed.

 

7. Strauch, M. A. & Hoch, J. A. Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol. Microbiol. 7, 337-342 (1993)   pubmed.

 

8. Schultz, D., Wolynes, P. G., Ben Jacob, E. & Onuchic, J. N. Deciding fate in adverse times: sporulation and competence in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 106, 21027-21034 (2009)   pubmed.

 

9. Strauch, M. A. et al. The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J. 8, 1615-1621 (1989)   pubmed.

 

10. Perego, M., Spiegelman, G. B. & Hoch, J. A. Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spo0A sporulation gene in Bacillus subtilis. Mol. Microbiol. 2, 689-699 (1988)   pubmed.

 

11. Perego, M. & Hoch, J. A. Sequence analysis and regulation of the hpr locus, a regulatory gene for protease production and sporulation in Bacillus subtilis. J. Bacteriol. 170, 2560-2567 (1988)   pubmed.

 

12. Kallio, P. T., Fagelson, J. E., Hoch, J. A. & Strauch, M. A. The transition state regulator Hpr of Bacillus subtilis is a DNA-binding protein. J. Biol. Chem. 266, 13411-13417 (1991)   pubmed.

 

13. Koide, A., Perego, M. & Hoch, J. A. ScoC regulates peptide transport and sporulation initiation in Bacillus subtilis. J. Bacteriol. 181, 4114-4117 (1999)   pubmed.

 

14. Shafikhani, S. H., Mandic-Mulec, I., Strauch, M. A., Smith, I. & Leighton, T. Postexponential regulation of sin operon expression in Bacillus subtilis. J. Bacteriol. 184, 564-571 (2002)   pubmed.

 

15. Shafikhani, S. H., Nunez, E. & Leighton, T. ScoC mediates catabolite repression of sporulation in Bacillus subtilis. Curr. Microbiol. 47, 327-336 (2003)   pubmed.

 

16. Strauch, M. A., Perego, M., Burbulys, D. & Hoch, J. A. The transition state transcription regulator AbrB of Bacillus subtilis is autoregulated during vegetative growth. Mol. Microbiol. 3, 1203-1209 (1989)   pubmed.

 

17. Gaur, N. K., Cabane, K. & Smith, I. Structure and expression of the Bacillus subtilis sin operon. J. Bacteriol. 170, 1046-1053 (1988)   pubmed.

 

18. Kearns, D. B., Chu, F., Branda, S. S., Kolter, R. & Losick, R. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol. 55, 739-749 (2005)   pubmed.

 

19. Gaur, N. K., Dubnau, E. & Smith, I. Characterization of a cloned Bacillus subtilis gene that inhibits sporulation in multiple copies. J. Bacteriol. 168, 860-869 (1986)   pubmed.

 

20. Mandic-Mulec, I., Gaur, N., Bai, U. & Smith, I. Sin, a stage-specific repressor of cellular differentiation. J. Bacteriol. 174, 3561-3569 (1992)   pubmed.

 

21. Mandic-Mulec, I., Doukhan, L. & Smith, I. The Bacillus subtilis SinR protein is a repressor of the key sporulation gene spo0A. J. Bacteriol. 177, 4619-4627 (1995)   pubmed.

 

22. Cervin, M. A., Lewis, R. J., Brannigan, J. A. & Spiegelman, G. B. The Bacillus subtilis regulator SinR inhibits spoIIG promoter transcription in vitro without displacing RNA polymerase. Nucleic Acids Res. 26, 3806-3812 (1998)   pubmed.

 

23. Smith, I., Mandic-Mulec, I. & Gaur, N. The role of negative control in sporulation. Res. Microbiol. 142, 831-839 (1991)   pubmed.

 

24. Strauch, M. A., Trach, K. A., Day, J. & Hoch, J. A. Spo0A activates and represses its own synthesis by binding at its dual promoters. Biochimie 74, 619-626 (1992)   pubmed.

 

25. Chibazakura, T., Kawamura, F. & Takahashi, H. Differential regulation of spo0A transcription in Bacillus subtilis: glucose represses promoter switching at the initiation of sporulation. J. Bacteriol. 173, 2625-2632 (1991)   pubmed.

 

26. Chastanet, A. & Losick, R. Just-in-time control of Spo0A synthesis in Bacillus subtilis by multiple regulatory mechanisms. J. Bacteriol. 193, 6366-6374 (2011)   pubmed.

 

27. Dubnau, E. et al. Bacillus sporulation gene spo0H codes for sigma 30 (sigma H). J. Bacteriol. 170, 1054-1062 (1988)   pubmed.

 

28. Weir, J., Predich, M., Dubnau, E., Nair, G. & Smith, I. Regulation of spo0H, a gene coding for the Bacillus subtilis sigma H factor. J. Bacteriol. 173, 521-529 (1991)   pubmed.

 

29. Shank, E. A. & Kolter, R. Extracellular signaling and multicellularity in Bacillus subtilis. Curr. Opin. Microbiol. 14, 741-747 (2011)   pubmed.

 

30. de Hoon, M. J. L., Eichenberger, P. & Vitkup, D. Hierarchical Evolution of the Bacterial Sporulation Network. Current Biology 20, R735-R745 (2010)   pubmed.

 

31. Lopez, D., Vlamakis, H. & Kolter, R. Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol. Rev. 33, 152-163 (2009)   pubmed.

 

32. Burkholder, W. F., Kurtser, I. & Grossman, A. D. Replication initiation proteins regulate a developmental checkpoint in Bacillus subtilis. Cell 104, 269-279 (2001)   pubmed.

 

33. Hilbert, D. W. & Piggot, P. J. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol. Mol. Biol. Rev. 68, 234-262 (2004)   pubmed.

 

34. Stragier, P. & Losick, R. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30, 297-241 (1996)   pubmed.

 

35. Kuchina, A., Espinar, L., Garcia-Ojalvo, J. & Suel, G. M. Reversible and noisy progression towards a commitment point enables adaptable and reliable cellular decision-making. PLoS Comput. Biol. 7, e1002273 (2011)   pubmed.

 

36. Lewis, K. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64, 503-514 (2000)   pubmed.

 

37. Perego, M. & Hoch, J. A. Bacillus subtilis and its closest relatives: from genes to cells (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) , 473-481 (ASM Press, Washington, DC, 2002)   pubmed.

 

38. Burbulys, D., Trach, K. A. & Hoch, J. A. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64, 545-552 (1991)   pubmed.

 

39. Siebring, J., Sorg, R., Herber, M. & Kuipers, O. P. Bacterial Regulatory Networks (ed Filloux, A. M.) , 305-332 (Caister Academic Press, 2012).   pubmed.

 

40. Chung, J. D., Stephanopoulos, G., Ireton, K. & Grossman, A. D. Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation. J. Bacteriol. 176, 1977-1984 (1994)   pubmed.

 

41. de Jong, I. G., Veening, J. W. & Kuipers, O. P. Heterochronic phosphorelay gene expression as a source of heterogeneity in Bacillus subtilis spore formation. J. Bacteriol. 192, 2053-2067 (2010)   pubmed.

 

42. Molle, V. et al. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50, 1683-1701 (2003)   pubmed.

 

43. Fujita, M. & Losick, R. Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Dev. 19, 2236-2244 (2005)   pubmed.

 

44. Fujita, M., Gonzalez-Pastor, J. E. & Losick, R. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J. Bacteriol. 187, 1357-1368 (2005)   pubmed.

 

45. Gonzalez-Pastor, J. E. Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS Microbiol. Rev. 35, 415-424 (2011)   pubmed.

 

46. Strauch, M., Webb, V., Spiegelman, G. & Hoch, J. A. The SpoOA protein of Bacillus subtilis is a repressor of the abrB gene. Proc. Natl. Acad. Sci. U. S. A. 87, 1801-1805 (1990)   pubmed.

 

47. Bai, U., Mandic-Mulec, I. & Smith, I. SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction. Genes Dev. 7, 139-148 (1993)   pubmed.

 

48. Wu, R. et al. Insight into the sporulation phosphorelay: Crystal structure of the sensor domain of Bacillus subtilis histidine kinase, KinD. Protein Sci. 22, 564-576 (2013)   pubmed.

 

49. Piggot, P. J. & Hilbert, D. W. Sporulation of Bacillus subtilis. Curr. Opin. Microbiol. 7, 579-586 (2004)   pubmed.

 

50. Stephenson, K. & Hoch, J. A. Evolution of signalling in the sporulation phosphorelay. Mol. Microbiol. 46, 297-304 (2002)   pubmed.

 

51. Reder, A., Gerth, U. & Hecker, M. Integration of sigmaB activity into the decision-making process of sporulation initiation in Bacillus subtilis. J. Bacteriol. 194, 1065-1074 (2012)   pubmed.

 

52. Eswaramoorthy, P., Dinh, J., Duan, D., Igoshin, O. A. & Fujita, M. Single-cell measurement of the levels and distributions of the phosphorelay components in a population of sporulating Bacillus subtilis cells. Microbiology 156, 2294-2304 (2010)   pubmed.

 

53. Eswaramoorthy, P. et al. The threshold level of the sensor histidine kinase KinA governs entry into sporulation in Bacillus subtilis. J. Bacteriol. 192, 3870-3882 (2010)   pubmed.

 

54. Sen, S., Garcia-Ojalvo, J. & Elowitz, M. B. Dynamical consequences of bandpass feedback loops in a bacterial phosphorelay. PLoS One 6, e25102 (2011)   pubmed.

 

55. Chastanet, A. et al. Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 107, 8486-8491 (2010)   pubmed.

 

56. Levine, J. H., Fontes, M. E., Dworkin, J. & Elowitz, M. B. Pulsed feedback defers cellular differentiation. PLoS Biol. 10, e1001252 (2012)   pubmed.

 

57. Narula, J., Devi, S. N., Fujita, M. & Igoshin, O. A. Ultrasensitivity of the Bacillus subtilis sporulation decision. Proc. Natl. Acad. Sci. U. S. A. 109(50), E3513-22 (2012)   pubmed.

 

58. Banse, A. V., Chastanet, A., Rahn-Lee, L., Hobbs, E. C. & Losick, R. Parallel pathways of repression and antirepression governing the transition to stationary phase in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 105, 15547-15552 (2008)   pubmed.

 

59. Healy, J., Weir, J., Smith, I. & Losick, R. Post-transcriptional control of a sporulation regulatory gene encoding transcription factor sigma H in Bacillus subtilis. Mol. Microbiol. 5, 477-487 (1991)   pubmed.

 

60. Asai, K., Kawamura, F., Yoshikawa, H. & Takahashi, H. Expression of kinA and accumulation of sigma H at the onset of sporulation in Bacillus subtilis. J. Bacteriol. 177, 6679-6683 (1995)   pubmed.

 

61. Predich, M., Nair, G. & Smith, I. Bacillus subtilis early sporulation genes kinA, spo0F, and spo0A are transcribed by the RNA polymerase containing sigma H. J. Bacteriol. 174, 2771-2778 (1992)   pubmed.

 

62. Fujita, M. & Sadaie, Y. Feedback loops involving Spo0A and AbrB in in vitro transcription of the genes involved in the initiation of sporulation in Bacillus subtilis. J. Biochem. 124, 98-104 (1998)   pubmed.

 

63. Britton, R. A. et al. Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillus subtilis. J. Bacteriol. 184, 4881-4890 (2002)   pubmed.

 

64. Caldwell, R. et al. Correlation between Bacillus subtilis scoC phenotype and gene expression determined using microarrays for transcriptome analysis. J. Bacteriol. 183, 7329-7340 (2001)   pubmed.

 

65. Bramkamp, M. & van Baarle, S. Division site selection in rod-shaped bacteria. Curr. Opin. Microbiol. 12, 683-688 (2009)   pubmed.

 

66. Yudkin, M. D. & Clarkson, J. Differential gene expression in genetically identical sister cells: the initiation of sporulation in Bacillus subtilis. Mol Microbiol 56, 578-589 (2005)   pubmed.

 

67. Bylund, J. E., Haines, M. A., Piggot, P. J. & Higgins, M. L. Axial filament formation in Bacillus subtilis: induction of nucleoids of increasing length after addition of chloramphenicol to exponential-phase cultures approaching stationary phase. J. Bacteriol. 175, 1886-1890 (1993)   pubmed.

 

68. Wu, L. J. & Errington, J. Use of asymmetric cell division and spoIIIE mutants to probe chromosome orientation and organization in Bacillus subtilis. Mol. Microbiol. 27, 777-786 (1998)   pubmed.

 

69. Errington, J. From spores to antibiotics via the cell cycle. Microbiology Microbiology 156(Pt 1), 1-13 (2010)   pubmed.

 

70. Ben-Yehuda, S., Rudner, D. Z. & Losick, R. RacA, a bacterial protein that anchors chromosomes to the cell poles. Science 299, 532-536 (2003)   pubmed.

 

71. Ben-Yehuda, S. & Losick, R. Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109, 257-266 (2002)   pubmed.

 

72. Errington, J. Regulation of endospore formation in Bacillus subtilis. Nat Rev Micro 1, 117-126 (2003)   pubmed.

 

73. Eichenberger, P., Fawcett, P. & Losick, R. A three-protein inhibitor of polar septation during sporulation in Bacillus subtilis. Mol. Microbiol. 42, 1147-1162 (2001)   pubmed.

 

74. Chastanet, A. & Losick, R. Engulfment during sporulation in Bacillus subtilis is governed by a multi-protein complex containing tandemly acting autolysins. Mol. Microbiol. 64, 139-152 (2007)   pubmed.

 

75. Mirouze, N., Desai, Y., Raj, A. & Dubnau, D. Spo0A~P imposes a temporal gate for the bimodal expression of competence in Bacillus subtilis. PLoS Genet. 8, e1002586 (2012)   pubmed.

 

76. Duncan, L., Alper, S., Arigoni, F., Losick, R. & Stragier, P. Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science 270, 641-644 (1995)   pubmed.

 

77. Kumar, A. & Moran, C. P.,Jr. Promoter activation by repositioning of RNA polymerase. J. Bacteriol. 190, 3110-3117 (2008)   pubmed.

 

78. Min, K. T., Hilditch, C. M., Diederich, B., Errington, J. & Yudkin, M. D. Sigma F, the first compartment-specific transcription factor of B. subtilis, is regulated by an anti-sigma factor that is also a protein kinase. Cell 74, 735-742 (1993)   pubmed.

 

79. Hofmeister, A. E., Londono-Vallejo, A., Harry, E., Stragier, P. & Losick, R. Extracellular signal protein triggering the proteolytic activation of a developmental transcription factor in B. subtilis. Cell 83, 219-226 (1995)   pubmed.

 

80. Karow, M. L., Glaser, P. & Piggot, P. J. Identification of a gene, spoIIR, that links the activation of sigma E to the transcriptional activity of sigma F during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 92, 2012-2016 (1995)   pubmed.

 

81. Hofmeister, A. E. Activation of the proprotein transcription factor pro-sigmaE is associated with its progression through three patterns of subcellular localization during sporulation in Bacillus subtilis. J. Bacteriol? 180, 2426-2433 (1998)   pubmed.

 

82. Fujita, M. & Losick, R. An investigation into the compartmentalization of the sporulation transcription factor sigmaE in Bacillus subtilis. Mol. Microbiol. 43, 27-38 (2002)   pubmed.

 

83. Parker, G. F., Daniel, R. A. & Errington, J. Timing and genetic regulation of commitment to sporulation in Bacillus subtilis. Microbiology 142 (Pt 12), 3445-3452 (1996)   pubmed.

 

84. Rudner, D. Z. & Losick, R. Morphological coupling in development: lessons from prokaryotes. Dev. Cell. 1, 733-742 (2001)   pubmed.

 

85. Wu, L. J. & Errington, J. Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. Science 264, 572-575 (1994)   pubmed.

 

86. Dworkin, J. & Losick, R. Differential gene expression governed by chromosomal spatial asymmetry. Cell 107, 339-346 (2001)   pubmed.

 

87. Wu, L. J. & Errington, J. Septal localization of the SpoIIIE chromosome partitioning protein in Bacillus subtilis. EMBO J. 16, 2161-2169 (1997)   pubmed.

 

88. Meyer, P., Gutierrez, J., Pogliano, K. & Dworkin, J. Cell wall synthesis is necessary for membrane dynamics during sporulation of Bacillus subtilis. Mol. Microbiol. 76, 956-970 (2010)   pubmed.

 

89. Higgins, D. & Dworkin, J. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 36, 131-148 (2012)   pubmed.

 

90. Illing, N. & Errington, J. Genetic regulation of morphogenesis in Bacillus subtilis: roles of sigma E and sigma F in prespore engulfment. J. Bacteriol. 173, 3159-3169 (1991)   pubmed.

 

91. Broder, D. H. & Pogliano, K. Forespore engulfment mediated by a ratchet-like mechanism. Cell 126, 917-928 (2006)   pubmed.

 

92. Doan, T. & Rudner, D. Z. Perturbations to engulfment trigger a degradative response that prevents cell-cell signalling during sporulation in Bacillus subtilis. Mol. Microbiol. 64, 500-511 (2007)   pubmed.

 

93. Dworkin, J. Transient genetic asymmetry and cell fate in a bacterium. Trends Genet. 19, 107-112 (2003)   pubmed.

 

94. Eldar, A. et al. Partial penetrance facilitates developmental evolution in bacteria. Nature 460, 510-514 (2009)   pubmed.

 

95. Eichenberger, P. et al. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. 2, e328 (2004)   pubmed.

 

96. Cangiano, G. et al. Direct and indirect control of late sporulation genes by GerR of Bacillus subtilis. J. Bacteriol. 192, 3406-3413 (2010)   pubmed.

 

97. Li, Z. & Piggot, P. J. Development of a two-part transcription probe to determine the completeness of temporal and spatial compartmentalization of gene expression during bacterial development. Proc. Natl. Acad. Sci. U. S. A. 98, 12538-12543 (2001)   pubmed.

 

98. Ho, M. S., Carniol, K. & Losick, R. Evidence in support of a docking model for the release of the transcription factor sigma F from the antisigma factor SpoIIAB in Bacillus subtilis. J. Biol. Chem. 278, 20898-20905 (2003)   pubmed.

 

99. Campo, N., Marquis, K. A. & Rudner, D. Z. SpoIIQ anchors membrane proteins on both sides of the sporulation septum in Bacillus subtilis. J. Biol. Chem. 283, 4975-4982 (2008)   pubmed.

 

100. Steil, L., Serrano, M., Henriques, A. O. & V?lker, U. Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology 151, 399-420 (2005)   pubmed.

 

101. Wang, S. T. et al. The forespore line of gene expression in Bacillus subtilis. J. Mol. Biol. 358, 16-37 (2006)   pubmed.

 

102. Diez, V., Schujman, G. E., Gueiros-Filho, F. J. & de Mendoza, D. Vectorial signalling mechanism required for cell-cell communication during sporulation in Bacillus subtilis. Mol. Microbiol. 83, 261-274 (2012)   pubmed.

 

103. Eichenberger, P. et al. The sigmaE regulon and the identification of additional sporulation genes in Bacillus subtilis. J. Mol. Biol. 327, 945-972 (2003)   pubmed.

 

104. Fujita, M. & Losick, R. The master regulator for entry into sporulation in Bacillus subtilis becomes a cell-specific transcription factor after asymmetric division. Genes Dev. 17, 1166-1174 (2003)   pubmed.

 

105. Arabolaza, A. L. et al. Characterization of a novel inhibitory feedback of the anti-anti-sigma SpoIIAA on Spo0A activation during development in Bacillus subtilis. Mol. Microbiol. 47, 1251-1263 (2003)   pubmed.

 

107. Feucht, A., Evans, L. & Errington, J. Identification of sporulation genes by genome-wide analysis of the sigmaE regulon of Bacillus subtilis. Microbiology 149, 3023-3034 (2003)   pubmed.

 

108. Juan Wu, L. & Errington, J. Identification and characterization of a new prespore-specific regulatory gene, rsfA, of Bacillus subtilis. J. Bacteriol. 182, 418-424 (2000)   pubmed.

 

109. Halberg, R. & Kroos, L. Sporulation regulatory protein SpoIIID from Bacillus subtilis activates and represses transcription by both mother-cell-specific forms of RNA polymerase. J. Mol. Biol. 243, 425-436 (1994)   pubmed.

 

110. Chen B, Himes P, Liu Y, Zhang Y, Lu Z, Liu A, Yan H, Kroos L. Structure of Bacterial Transcription Factor SpoIIID and Evidence for a Novel Mode of DNA Binding. J. Bacteriol. epub ahead of print, 2014   pubmed.

 

111. Halberg, R. & Kroos, L. Fate of the SpoIIID switch protein during Bacillus subtilis sporulation depends on the mother-cell sigma factor, sigma K. J. Mol. Biol. 228, 840-849 (1992)   pubmed.

 

112. Ichikawa, H. & Kroos, L. Combined action of two transcription factors regulates genes encoding spore coat proteins of Bacillus subtilis. J. Biol. Chem. 275, 13849-13855 (2000)   pubmed.

 

113. Kuwana, R., Okumura, T., Takamatsu, H. & Watabe, K. The ylbO gene product of Bacillus subtilis is involved in the coat development and lysozyme resistance of spore. FEMS Microbiol. Lett. 242, 51-57 (2005)   pubmed.

 

114. Karmazyn-Campelli, C., Bonamy, C., Savelli, B. & Stragier, P. Tandem genes encoding sigma-factors for consecutive steps of development in Bacillus subtilis. Genes Dev. 3, 150-157 (1989)   pubmed.

 

115. Masuda, E. S., Anaguchi, H., Yamada, K. & Kobayashi, Y. Two developmental genes encoding sigma factor homologs are arranged in tandem in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 85, 7637-7641 (1988)   pubmed.

 

116. Chary, V. K., Meloni, M., Hilbert, D. W. & Piggot, P. J. Control of the expression and compartmentalization of (sigma)G activity during sporulation of Bacillus subtilis by regulators of (sigma)F and (sigma)E. J. Bacteriol. 187, 6832-6840 (2005)   pubmed.

 

117. Sun, D. X., Cabrera-Martinez, R. M. & Setlow, P. Control of transcription of the Bacillus subtilis spoIIIG gene, which codes for the forespore-specific transcription factor sigma G. J. Bacteriol. 173, 2977-2984 (1991)   pubmed.

 

118. Partridge, S. R. & Errington, J. The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol. Microbiol. 8, 945-955 (1993)   pubmed.

 

119. Rhayat, L., Duperrier, S., Carballido-Lopez, R., Pellegrini, O. & Stragier, P. Genetic dissection of an inhibitor of the sporulation sigma factor sigma(G). J. Mol. Biol. 390, 835-844 (2009)   pubmed.

 

120. Serrano, M. et al. A negative feedback loop that limits the ectopic activation of a cell type-specific sporulation sigma factor of Bacillus subtilis. PLoS Genet. 7, e1002220 (2011)   pubmed.

 

121. Karmazyn-Campelli, C. et al. How the early sporulation sigma factor sigmaF delays the switch to late development in Bacillus subtilis. Mol. Microbiol. 67, 1169-1180 (2008)   pubmed.

 

122. Camp, A. H. & Losick, R. A novel pathway of intercellular signalling in Bacillus subtilis involves a protein with similarity to a component of type III secretion channels. Mol. Microbiol. 69, 402-417 (2008)   pubmed.

 

123. Kunkel, B., Kroos, L., Poth, H., Youngman, P. & Losick, R. Temporal and spatial control of the mother-cell regulatory gene spoIIID of Bacillus subtilis. Genes Dev. 3, 1735-1744 (1989)   pubmed.

 

124. Takemaru, K., Mizuno, M., Sato, T., Takeuchi, M. & Kobayashi, Y. Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis. Microbiology 141 ( Pt 2), 323-327 (1995)   pubmed.

 

125. Stragier, P., Kunkel, B., Kroos, L. & Losick, R. Chromosomal rearrangement generating a composite gene for a developmental transcription factor. Science 243, 507-512 (1989)   pubmed.

 

126. Kunkel, B., Losick, R. & Stragier, P. The Bacillus subtilis gene for the development transcription factor sigma K is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. Genes Dev. 4, 525-535 (1990)   pubmed.

 

127. Zhang, B., Hofmeister, A. E. & Kroos, L. The prosequence of pro-sigmaK promotes membrane association and inhibits RNA polymerase core binding. J. Bacteriol. 180, 2434-2441 (1998)   pubmed.

 

128. Lu, S., Halberg, R. & Kroos, L. Processing of the mother-cell sigma factor, sigma K, may depend on events occurring in the forespore during Bacillus subtilis development. Proc. Natl. Acad. Sci. U. S. A. 87, 9722-9726 (1990)   pubmed.

 

129. Oke, V. & Losick, R. Multilevel regulation of the sporulation transcription factor sigma K in Bacillus subtilis. J. Bacteriol. 175, 7341-7347 (1993)   pubmed.

 

130. Levdikov, V. M. et al. Structure of components of an intercellular channel complex in sporulating Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 109, 5441-5445 (2012)   pubmed.

 

131. Meisner, J., Wang, X., Serrano, M., Henriques, A. O. & Moran, C. P.,Jr. A channel connecting the mother cell and forespore during bacterial endospore formation. Proc. Natl. Acad. Sci. U. S. A. 105, 15100-15105 (2008)   pubmed.

 

132. Doan, T. et al. Novel secretion apparatus maintains spore integrity and developmental gene expression in Bacillus subtilis. PLoS Genet. 5, e1000566 (2009)   pubmed.

 

133. Meisner, J., Maehigashi, T., Andre, I., Dunham, C. M. & Moran, C. P.,Jr. Structure of the basal components of a bacterial transporter. Proc Natl Acad Sci U S A 109, 5446-5451 (2012)   pubmed.

 

134. Camp, A. H. & Losick, R. A feeding tube model for activation of a cell-specific transcription factor during sporulation in Bacillus subtilis. Genes Dev. 23, 1014-1024 (2009)   pubmed.

 

135. Kirchman, P. A., DeGrazia, H., Kellner, E. M. & Moran, C. P.,Jr. Forespore-specific disappearance of the sigma-factor antagonist spoIIAB: implications for its role in determination of cell fate in Bacillus subtilis. Mol. Microbiol. 8, 663-671 (1993)   pubmed.

 

136. Schmidt, R., Decatur, A. L., Rather, P. N., Moran, C. P.,Jr & Losick, R. Bacillus subtilis lon protease prevents inappropriate transcription of genes under the control of the sporulation transcription factor sigma G. J. Bacteriol. 176, 6528-6537 (1994)   pubmed.

 

137. Zhang, B., Struffi, P. & Kroos, L. sigmaK can negatively regulate sigE expression by two different mechanisms during sporulation of Bacillus subtilis. J. Bacteriol. 181, 4081-4088 (1999)   pubmed.

 

138. Fujita, M. Temporal and selective association of multiple sigma factors with RNA polymerase during sporulation in Bacillus subtilis. Genes Cells 5, 79-88 (2000)   pubmed.

 

139. Camp, A. H., Wang, A. F. & Losick, R. A small protein required for the switch from ?F to ?G during sporulation in Bacillus subtilis. J. Bacteriol. 193, 116-124 (2011)   pubmed.

 

140. Traag, B. A., Ramirez-Peralta, A., Wang Erickson, A. F., Setlow, P. & Losick, R. A novel RNA polymerase-binding protein controlling genes involved in spore germination in Bacillus subtilis. Mol. Microbiol. 89, 113-122 (2013)   pubmed.

 

141. McKenney, P. T., Driks, A. & Eichenberger, P. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat. Rev. Microbiol. 11(1), 33-44 (2012)   pubmed.

 

142. Serrano, M., Neves, A., Soares, C. M., Moran, C. P.,Jr & Henriques, A. O. Role of the anti-sigma factor SpoIIAB in regulation of sigmaG during Bacillus subtilis sporulation. J. Bacteriol. 186, 4000-4013 (2004)   pubmed.

 

143. Kellner, E. M., Decatur, A. & Moran, C. P.,Jr. Two-stage regulation of an anti-sigma factor determines developmental fate during bacterial endospore formation. Mol. Microbiol. 21, 913-924 (1996)   pubmed.

 

144. Chary, V. K., Xenopoulos, P. & Piggot, P. J. Blocking chromosome translocation during sporulation of Bacillus subtilis can result in prespore-specific activation of sigmaG that is independent of sigmaE and of engulfment. J. Bacteriol. 188, 7267-7273 (2006)   pubmed.

 

145. Serrano, M., Corte, L., Opdyke, J., Moran, C. P.,Jr & Henriques, A. O. Expression of spoIIIJ in the prespore is sufficient for activation of sigma G and for sporulation in Bacillus subtilis. J. Bacteriol. 185, 3905-3917 (2003)   pubmed.

 

146. Serrano, M., Vieira, F., Moran, C. P.,Jr & Henriques, A. O. Processing of a membrane protein required for cell-to-cell signaling during endospore formation in Bacillus subtilis. J. Bacteriol. 190, 7786-7796 (2008)   pubmed.

 

147. Cutting, S., Driks, A., Schmidt, R., Kunkel, B. & Losick, R. Forespore-specific transcription of a gene in the signal transduction pathway that governs Pro-sigma K processing in Bacillus subtilis. Genes Dev. 5, 456-466 (1991)   pubmed.

 

148. Cutting, S., Roels, S. & Losick, R. Sporulation operon spoIVF and the characterization of mutations that uncouple mother-cell from forespore gene expression in Bacillus subtilis. J. Mol. Biol. 221, 1237-1256 (1991)   pubmed.

 

149. Resnekov, O. & Losick, R. Negative regulation of the proteolytic activation of a developmental transcription factor in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 95, 3162-3167 (1998)   pubmed.

 

150. Zhou, R., Cusumano, C., Sui, D., Garavito, R. M. & Kroos, L. Intramembrane proteolytic cleavage of a membrane-tethered transcription factor by a metalloprotease depends on ATP. Proc. Natl. Acad. Sci. U. S. A. 106, 16174-16179 (2009)   pubmed.

 

151. Zhang, B., Daniel, R. A., Errington, J. & Kroos, L. Bacillus subtilis SpoIIID protein binds to two sites in the spoVD promoter and represses transcription by sigmaE RNA polymerase. J. Bacteriol. 179, 972-975 (1997)   pubmed.

 

152. Ichikawa, H., Halberg, R. & Kroos, L. Negative regulation by the Bacillus subtilis GerE protein. J. Biol. Chem. 274, 8322-8327 (1999)   pubmed.

 

153. Wang, L., Perpich, J., Driks, A. & Kroos, L. One perturbation of the mother cell gene regulatory network suppresses the effects of another during sporulation of Bacillus subtilis. J. Bacteriol. 189, 8467-8473 (2007)   pubmed.

 

154. Wang, L., Perpich, J., Driks, A. & Kroos, L. Maintaining the transcription factor SpoIIID level late during sporulation causes spore defects in Bacillus subtilis. J. Bacteriol. 189, 7302-7309 (2007)   pubmed.

 

155. Sullivan, D. M. et al. Insights into the nature of DNA binding of AbrB-like transcription factors. Structure 16, 1702-1713 (2008)   pubmed.

 

156. Asen, I., Djuranovic, S., Lupas, A. N. & Zeth, K. Crystal structure of SpoVT, the final modulator of gene expression during spore development in Bacillus subtilis. J. Mol. Biol. 386, 962-975 (2009)   pubmed.

 

157. Bagyan, I., Hobot, J. & Cutting, S. A compartmentalized regulator of developmental gene expression in Bacillus subtilis. J. Bacteriol. 178, 4500-4507 (1996)   pubmed.

 

158. Ramirez-Peralta, A. et al. Effects of the SpoVT regulatory protein on the germination and germination protein levels of spores of Bacillus subtilis. J. Bacteriol. 194, 3417-3425 (2012)   pubmed.

 

159. Kuwana, R., Ikejiri, H., Yamamura, S., Takamatsu, H. & Watabe, K. Functional relationship between SpoVIF and GerE in gene regulation during sporulation of Bacillus subtilis. Microbiology 150, 163-170 (2004)   pubmed.

 

160. Setlow, P. I will survive: DNA protection in bacterial spores. Trends in Microbiology 15, 172-180 (2007)   pubmed.

 

161. Setlow, P. Spore germination. Current Opinion in Microbiology 6, 550-556 (2003)   pubmed.

 

162. Moir, A. How do spores germinate? J. Appl. Microbiol. 101, 526-530 (2006)   pubmed.

 

163. Henriques, A. O. & Moran, C. P.,Jr. Structure, assembly, and function of the spore surface layers. Annu. Rev. Microbiol. 61, 555-588 (2007)   pubmed.

 

164. Imamura, D., Kuwana, R., Takamatsu, H. & Watabe, K. Localization of proteins to different layers and regions of Bacillus subtilis spore coats. J. Bacteriol. 192, 518-524 (2010)   pubmed.

 

165. McKenney, P. T. & Eichenberger, P. Dynamics of spore coat morphogenesis in Bacillus subtilis. Mol. Microbiol. 83, 245-260 (2012)   pubmed.

 

166. McKenney, P. T. et al. A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat. Curr. Biol. 20, 934-938 (2010)   pubmed.

 

167. Hosoya, S., Lu, Z., Ozaki, Y., Takeuchi, M. & Sato, T. Cytological analysis of the mother cell death process during sporulation in Bacillus subtilis. J. Bacteriol. 189, 2561-2565 (2007)   pubmed.

 

168. Nugroho, F. A., Yamamoto, H., Kobayashi, Y. & Sekiguchi, J. Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis. J. Bacteriol. 181, 6230-6237 (1999)   pubmed.

 

169. van Sinderen, D., Kiewiet, R. & Venema, G. Differential expression of two closely related deoxyribonuclease genes, nucA and nucB, in Bacillus subtilis. Mol. Microbiol. 15, 213-223 (1995)   pubmed.

 

170. Veening, J. W. et al. Bet-hedging and epigenetic inheritance in bacterial cell development. Proc. Natl. Acad. Sci. U. S. A. 105, 4393-4398 (2008)   pubmed.

 

171. Claverys, J. P. & Havarstein, L. S. Cannibalism and fratricide: mechanisms and raisons d'etre. Nat. Rev. Microbiol. 5, 219-229 (2007)   pubmed.

 

172. Setlow, P. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101, 514-525 (2006)   pubmed.

 

173. Sanchez-Salas, J. L., Setlow, B., Zhang, P., Li, Y. Q. & Setlow, P. Maturation of released spores is necessary for acquisition of full spore heat resistance during Bacillus subtilis sporulation. Appl. Environ. Microbiol. 77, 6746-6754 (2011)   pubmed.

 

174. Segev, E., Smith, Y. & Ben-Yehuda, S. RNA dynamics in aging bacterial spores. Cell 148, 139-149 (2012)   pubmed.

 

175. Ramirez-Peralta, A., Zhang, P., Li, Y. Q. & Setlow, P. Effects of Sporulation Conditions on the Germination and Germination Protein Levels of Bacillus subtilis Spores. Appl. Environ. Microbiol. 78, 2689-2697 (2012)   pubmed.

 

176. Shah, I. M., Laaberki, M. H., Popham, D. L. & Dworkin, J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135, 486-496 (2008)   pubmed.

 

177. Paredes-Sabja, D., Setlow, P. & Sarker, M. R. Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends Microbiol. 19, 85-94 (2011)   pubmed.

 

178. Yi, X. & Setlow, P. Studies of the Commitment Step in the Germination of Spores of Bacillus Species. J. Bacteriol. 192, 3424-3433 (2010)   pubmed.

 

179. Dworkin, J. & Shah, I. M. Exit from dormancy in microbial organisms. Nat. Rev. Microbiol. 8, 890-896 (2010)   pubmed.

 

180. Keijser, B. J. F. et al. Analysis of Temporal Gene Expression during Bacillus subtilis Spore Germination and Outgrowth. J. Bacteriol. 189, 3624-3634 (2007)   pubmed.

 

181. Horsburgh, M. J., Thackray, P. D. & Moir, A. Transcriptional responses during outgrowth of Bacillus subtilis endospores. Microbiology 147, 2933-2941 (2001)   pubmed.

 

182. Galperin, M. Y. et al. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ. Microbiol. 14(11), 2870-90 (2012)   pubmed.

 

183. Nicolas, P. et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335, 1103-1106 (2012)   pubmed.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Sporulation cycle of Bacillus subtilis

PubMed